

UNIVERSIDAD COMPLUTENSE MADRID

HSP50

The 50th Anniversary HSP Conference 5-7 April 2017, York, UK

Application of the Hansen solubility theory for the selection of co-solvents for supercritical carbon dioxide extraction

Diego F. Tirado^a, Albertina Cabañas^b, M^a José Tenorio^b and Lourdes Calvo^{a*} ^aDepartment of Chemical Engineering ^bDepartment of Physical Chemistry Universidad Complutense de Madrid Av. Complutense s/n, 28040 Madrid, Spain

Introduction

Introduction

- A co-solvent/modifier/entrainer is added to a supercritical gas in order to:
 - 1. Increase solubility
 - 2. Increase separation factor
 - 3. Reduce operating pressure (V_T) and CO_2 consumption (Q)

- The co-solvent/modifier/entrainer should :
 - Have volatility between the supercritical solvent and the solute
 - Have higher critical temperature than the supercritical solvent
 - Be used in low concentrations < 10 % g g^{-1}
- However:
 - It increases the critical locus of the mixtures
 - It might contaminate the product, therefore a further separation stage would be needed
 - It should be recovered and reused
 - It should not be toxic. Most frequent ones are ethanol, ethyl acetate, water (low solubility in CO₂)

Objective of this study

The aim of this study was to predict the best co-solvents to be used with sc-CO₂ using the Hansen solubility theory.

The selection of the best cosolvent requires long and expensive experimental effort.

The work was exemplified on the extraction of some bioactive compounds.

H₃C CH₃

To estimate the HSP of the bioactive compounds

Calculated property	Method used				
HSP values from dispersion, polarity and	Hansen and Beerbower (2007)				
hydrogen bonding forces					
Total solubility parameter (δ _T)	Fedors (1974)				
Temperature dependence of the HSP	Jayasri and Yaseen (1980)				
compounds					
Critical properties	Joback and Reid (1987)				

HSP of β -carotene

HSP of linoleic acid

Prediction of the critical temperature

R-carotono

Functional group	Number of functional groups	T₀ [K]	Tc [K]	∑T♭ [K]	Σı	Γ _ε [K]	Critical temperature of linoleic
-CH₃	10	23.58	0.01	235.80	0).14	acid
-CH2- (Ring)	6	27.15	0.01	162.90	0).06	
-C Sat (Ring)	2	21.32	0.00	42.64	0).01	
-CH= (Ring)	14	26.73	0.01	374.22	0).11	787 K
-C=	4	24.14	0.01	96.56	0	0.05	
-C= (Ring)	4	31.01	0.01	124.04	0	0.06	
Total	40	153.93	0.06	1036.16	0	0.43	
Τc [K]					1070		

GCM by Jayasri and Yaseen (1980)

Effect of temperature on the HSP of β -carotene

Temperature (K)	δ₀ [MPa¹/2]	δ _p [MPa ^{1/2}]	δh [MPa ^{1/2}]
303.15	16.15	2.24	5.20
313.15	16.09	2.23	5.18
323.15	16.04	2.22	5.17
333.15	15.98	2.21	5.15
343.15	15.92	2.20	5.13
353.15	15.86	2.20	5.11
363.15	15.80	2.19	5.09
373.15	15.75	2.18	5.07

$$\frac{\delta_2}{\delta_1} = \left(\frac{1 - T_{r2}}{1 - T_{r1}}\right)^{0.34}$$

HSP of the solvents

Temperatures from 273.15 K to 373.15 K

Pressure from 5 MPa to 60 MPa

$$\frac{\delta_{Dref}}{\delta_D} = \left(\frac{V_{ref}}{V}\right)^{-1.25}$$

$$\frac{\delta_{Pref}}{\delta_P} = \left(\frac{V_{ref}}{V}\right)^{-0.5}$$

$$\frac{\delta_{Href}}{\delta_H} = exp\left[-1.32 \ x \ 10^{-3} \left(T_{ref} - T\right) - ln \left(\frac{V_{ref}}{V}\right)^{-0.5}\right]$$

 \sum Total Energy_{any blend} = Energy_{any 1} + Energy_{any 2} + Energy_{any 3} + Energy_{any 4}...

Box A3.1 The Linear Blend Rule

 $\delta_{any} = \sum \{ v_i \times [\delta_i] \}$ Linear Blend rule

The linear blend rule (above) has been used successfully for the past 40 years. It has the merit of simplicity³ and perhaps the assumptions behind solubility parameters don't warrant a more complex formula.

Durkee, J. Cleaning with Solvents: Science and Technology, William Andrew (2013)

Critical properties, HSP ref values (Hansen's handbook) and limiting conditions of the REFPROP model for the determination of molar volume

Solvent	Tc/K	Pc/MPa	EOS Limits	δ_{Dref}	δ_{Pref}	δ_{href}	Vref
Water	647.11	22.07	(273.16 – 2000) K, 1000 MPa	15.5	16.0	42.3	18.0
Methanol	512.68	7.95	(175.61 – 620) K, 800 MPa	15.1	12.3	22.3	40.7
CO ₂	304.13	7.38	(216.592 -2000) K, 800 MPa	15.6	5.2	5.8	39.1
Ethanol	514.57	6.23	(250 - 650) K, 280 MPa	15.8	8.8	19.4	58.5
Acetone	508.07	4.70	(178.5 – 550) K, 700 MPa	15.5	10.4	7.0	74.0
Diethyl ether	466.78	3.65	(270 – 500) K, 40 MPa	14.5	2.9	5.1	104.8
Benzene	562.02	4.89	(278.7 – 635) K., 78 MPa	18.4	0.0	2.0	89.4
Cyclohexane	553.4	4.07	(279.47 – 700) K, 80 MPa	16.8	0.0	0.2	108.8
n-Hexane	507.55	3.03	(177.83 - 600) K, 100 MPa	14.9	0.0	0.0	131.6

Solubility parameter (δ) in MPa^{1/2} and volume molar in cm³ mol⁻¹

Variation of the HSP of pure CO₂ with operating conditions

Variation of the HSP of CO_2 /ethanol (90:10 v/v) mixture with operating conditions

Total (one-component) and HSP values of the mixture of CO₂/ethanol (90:10 v/v)

Solubility estimation

Solubility predictions were evaluated using the Ra parameter for linoleic acid and RED parameter for β -carotene.

$$R_{a} = \sqrt{4(\delta_{d1} - \delta_{d2})^{2} + (\delta_{p1} - \delta_{p2})^{2} + (\delta_{h1} - \delta_{h2})^{2}}$$

 $RED = \frac{R_a}{R_0}$

Solubility data for linoleic acid in organic solvents were not available

Ra of linoleic acid in pure CO2

	P [MPa]											
T [K]	5	10	15	20	25	30	35	40	45	50	55	60
273.15	12.52	11.42	10.59	9.90	9.32	8.80	8.34	7.92	7.54	7.18	6.86	6.55
283.15	14.60	12.93	11.84	10.99	10.29	9.69	9.16	8.68	8.25	7.86	7.49	7.16
293.15	34.79	14.75	13.22	12.15	11.31	1 <u>10.60</u> 10.00 9.46 8.1		8.98	8.54	8.14	7.76	
303.15	34.89	17.20	14.81	13.41	12.39	11.56 10.86 10.25 9.71 9.2		9.22	8.78	8.37		
313.15	34.86	21.33	16.67	14.79	13.52	12.54	2.54 11.74 11.05 10.45 9		9.91	9.43	8.98	
323.15	34.76	28.04	18.91	16.29	14.71	13.56	12.64	11.86	11.19	10.60	10.07	9.59
333.15	34.63	30.23	21.54	17.92	15.96	14.60	13.54	12.67	11.93	11.28	10.70	10.18
343.15	34.47	31.00	24.14	19.63	17.25	15.65	14.45	13.48	12.66	11.95	11.33	10.76
353.15	34.28	31.36	26.07	21.31	18.54	16.71	15.36	14.28	13.39	12.62	11.94	11.33
363.15	34.08	31.52	27.29	22.81	19.78	17.74	16.25	15.06	14.09	13.26	12.53	11.89
373.15	33.87	31.57	28.04	24.03	20.92	18.73	17.10	15.82	14.77	13.88	13.11	12.42

R₀ estimation for β-carotene

	δd	δρ	δh	R₀			
β-carotene	16.18	2.24	5.21	8.47			
Solvents	δd	δρ	δh	V	Score	Ra	RED
Acetone	15.50	10.40	7.00	74.00	1.00	8.46	1.00
Acetonitrile	15.30	18.00	6.10	52.60	0.00	15.88	1.88
Benzene	18.40	0.00	2.00	89.40	1.00	5.92	0.70
Chloroform	17.80	3.10	5.70	80.70	1.00	3.39	0.40
Cyclohexane	16.80	0.00	0.20	108.70	1.00	5.63	0.66
Cyclohexanone	17.80	6.30	5.10	104.00	1.00	5.20	0.61
Dimethyle formamide (DMF)	17.40	13.70	11.30	77.00	0.00	13.20	1.56
Dimethyle sulfoxide (DMSO)	18.40	16.40	10.20	71.30	0.00	15.66	1.85
Ethanol	15.80	8.80	19.40	58.60	0.00	15.65	1.85
Ethyl Acetate	15.80	5.30	7.20	98.50	1.00	3.73	0.44
Ethyl ether	19.00	7.40	4.10	79.40	1.00	7.72	0.91
Hexane	14.90	0.00	0.00	131.60	1.00	6.22	0.73
Isopropyl alcohol	15.80	6.10	16.40	76.80	0.00	11.86	1.40
Methanol	15.10	12.30	22.30	40.70	0.00	19.95	2.36
Methyl ethyl ketone (2-butanone)	15.30	6.10	4.10	125.80	1.00	4.39	0.52
Tetrahydrofuran (THF)	16.80	5.70	8.00	81.70	1.00	4.61	0.54
Toluene	18.00	1.40	2.00	106.60	1.00	4.93	0.58

Validation of the predictions with experimental data obtained by static method

Materials & Methods

Installation: variable volume view cell

NIVERSIDAD

MADRLD

The Journal of Supercritical Fluids, 46(3), 238–244 (2008).

Solubility of linoleic acid in pure CO2

18 MPa, 310.15 K ↓P

15 MPa, 308.15 K

Solvent capacity (Ra) of CO₂-cosolvent mixtures at 313.15 K and increasing pressures predicted by Hansen theory

IVERSIDAD

Ranking	System	Tc/K	Pc/MPa	Ra at 10 MPa	Ra at 20 MPa					
1	CO_2 + Benzene	322.98	8.55	20.202	13.962					
2	$CO_2 + Cyclohexane$	322.75	9.05	20.369	14.129					
3	$CO_2 + Ethanol$	315.2	8.61	20.370	14.146					
4	$CO_2 + Water$	Very high CP		20.407	14.231					
5	CO_2 + Methanol	311.70	8.27	20.432	14.220					
6	CO_2 + acetone	323.15	8.94	20.478	14.262					
7	CO_2 + Hexane	316.80	8.49	20.550	14.302					
8	CO ₂ + Diethyl ether	Not found		20.559	14.313					
9	Pure CO2	304.13	7.3773	21.249	14.707					
	CO2 (1) + co-solvent (2) (X1 ≈ 0.95)									

Equilibrium pressure obtained by static method

Donking	Swatam	Equilibrium pressure/MPa					
Kalikilig	System	313.15 K	323.15 K				
1	CO_2 + Benzene	16.3 ± 0.1	18.0 ± 0.1				
2	$CO_2 + Cyclohexane$	17.4 ± 0.2	19.7 ± 0.2				
3	CO_2 + Ethanol	9.7 ± 0.2	12.5 ± 0.2				
4	CO_2 + Methanol	10.6 ± 0.0	13.7 ± 0.2				
5	CO_2 + acetone	12.2 ± 0.1	14.4 ± 0.1				
6	CO_2 + Hexane	15.6 ± 0.1	18.5 ± 0.1				
7	CO ₂ + Diethyl ether	17.5 ± 0.2	19.5 ± 0.2				
8	Pure CO ₂	22.2 ± 0.1	23.0 ± 0.1				
≈ 20	g of sample/kg of solvent	and CO2 + co-solve	nt (95:05 w/w)				

IVERSIDAD

Solvent capacity (Ra) of CO₂-cosolvent mixtures at 313.15 K and increasing pressures predicted by Hansen theory

Ranking	System	Tc/K	Pc/MPa	Ra at 10 MPa	Ra at 20 MPa
1	CO_2 + Benzene	322.98	8.55	20.202	13.962
2	CO_2 + Toluene	Not found		20.322	14.087
3	$CO_2 + Cyclohexane$	322.75	9.05	20.369	14.129
4	$CO_2 + Ethanol$	315.2	8.61	20.370	14.146
5	CO_2 + Methanol	311.70	8.27	20.432	14.220
6	CO_2 + acetone	323.15	8.94	20.478	14.262
7	CO_2 + Hexane	316.80	8.49	20.550	14.302
8	CO ₂ + Diethyl ether	Not found		20.559	14.313
9	Pure CO2	304.13	7.3773	21.249	14.707
	CO2 ((1) + co-solv	ent (2) (X1 \approx	0.95)	

Equilibrium pressure obtained by static method

Donking	Sustam	Equilibrium pressure/MPa					
Kanking	System	313.15 K	323.15 K				
1	CO_2 + Benzene	16.3 ± 0.1	18.0 ± 0.1				
2	$CO_2 + Toluene$	18.0 ± 0.1	22.7 ± 0.2				
3	$CO_2 + Cyclohexane$	17.4 ± 0.2	19.7 ± 0.2				
4	$CO_2 + Ethanol$	9.7 ± 0.2	12.5 ± 0.2				
5	CO_2 + Methanol	10.6 ± 0.0	13.7 ± 0.2				
6	CO_2 + acetone	12.2 ± 0.1	14.4 ± 0.1				
7	CO_2 + Hexane	15.6 ± 0.1	18.5 ± 0.1				
8	CO ₂ + Diethyl ether	17.5 ± 0.2	19.5 ± 0.2				
9	Pure CO ₂	22.2 ± 0.1	23.0 ± 0.1				
≈ 20 s	g of sample/kg of solvent	and CO ₂ + co-solve	nt (95:05 w/w)				

Co-solvent power ranked by RED

- 1. Benzene
- 2. Cyclohexane
- 3. Ethanol
- 4. n-Hexane
- 5. Acetone
- 6. Methanol
- 7. Diethyl ether
- 8. Water.

Solubility of β-carotene at NTP										
Solvent	Solubility [mg/L]	RED								
n-Hexane	600	0.73								
Acetone	200	1.00								
Ethanol	30	1.84								
Methanol	10	2.35								

CO₂ + co-solvents (95:05 v/v) at 313.15 K and 15 MPa

 $CO_2 + Ethanol$

CO₂ + Hexane

CO₂ + Acetone

RED of β -carotene in pure CO₂ as function of the pressure and temperature

						P [M	Pa]								
T [K]	5	10	15	20	25	30	35	40	45	50	55	60	F		
273.2	0.96	0.84	0.75	0.68	0.62	0.57	0.53	0.49	0.46	0.44	0.41	0.40		0-0.2	Highly soluble
283.2	1.21	1.02	0.89	0.80	0.73	0.67	0.61	0.57	0.53	0.49	0.46	0.44		0.2-0.4	
293.2	3.56	1.23	1.06	0.94	0.85	0.77	0.71	0.65	0.60	0.56	0.52	0.49		0.4-0.6	
303.2	3.59	1.53	1.25	1.09	0.98	0.89	0.81	0.74	0.69	0.64	0.59	0.55		0.6-0.8	
313.2	3.60	2.02	1.48	1.26	1.12	1.01	0.92	0.84	0.78	0.72	0.67	0.62		0.8-1	
323.2	3.60	2.82	1.75	1.45	1.27	1.14	1.03	0.94	0.87	0.80	0.75	0.70		>1	Insoluble
333.2	3.60	3.09	2.07	1.65	1.42	1.27	1.15	1.05	0.96	0.89	0.83	0.77			
343.2	3.59	3.19	2.39	1.86	1.59	1.40	1.26	1.15	1.06	0.98	0.91	0.85			
353.2	3.59	3.25	2.63	2.07	1.75	1.54	1.38	1.26	1.15	1.07	0.99	0.92			
363.2	3.58	3.28	2.79	2.26	1.91	1.67	1.50	1.36	1.25	1.15	1.07	1.00			
373.2	3.57	3.30	2.89	2.42	2.06	1.80	1.61	1.46	1.34	1.24	1.15	1.07			

Extraction of β-carotene from *Dunaliella salina* using supercritical CO₂

The highest yield of β -carotene was obtained at the **highest pressure** tested (43.73 MPa) and a **low temperature** (300.65 K).

3.751 mg β -carotene/100 mg extract were extracted under these conditions.

NIVERSIDAD

Comparison of the RED values of β-carotene in CO₂ and CO₂/ethanol (95:05 v/v) mixture

															_
T [K] / P [MPa]	Pure CO2						C	onditions	whe	re n	ure C	O, is	he	tter s	olvent
	10	20	30	40	50	60				Υ		\mathbf{v}_2			
273.15	0.83	0.67	0.56	0.49	0.43	0.40									_
283.15	1.01	0.80	0.66	0.56	0.49	0.44									_
293.15	1.23	0.94	0.77	0.65	0.56	0.49									_
303.15	1.53	1.10	0.89	0.75	0.64	0.56		T [K] / P [MP9]	RED pure CO2 - RED mixture						
313.15	2.03	1.27	1.01	0.85	0.72	0.63		1 [13] / 1 [1411 a]	10	20	30	40	50	60	
323.15	2.82	1.46	1.14	0.95	0.81	0.70		273.15	0.01	0.00	-0.01	-0.02	-0.03	-0.04	
333.15	3.10	1.66	1.28	1.06	0.90	0.78		283.15	0.03	0.01	0.00	-0.01	-0.02	-0.03	
343.15	3.21	1.88	1.42	1.17	0.99	0.86		293.15	0.05	0.03	0.01	0.00	-0.01	-0.02	
353.15	3.27	2.09	1.56	1.28	1.09	0.94		303.15	007	0.04	0.03	0.02	0.01	0.00	
363.15	3.30	2.29	1.70	1.39	1.18	1.02		313.15	0 10	0.06	0.04	0.03	0.02	0.01	
373.15	3.33	2.45	1.83	1.49	1.27	1.10		323.15	0.15	0.07	0.05	0.04	0.03	0.02	
								333.15	016	0.09	0.06	0.05	0.04	0.03	
T [K] / P [MPa]	CO2 + Ethanol (95:05 v/v)							343.15	017	0.10	0.08	0.06	0.05	0.04	
	10	20	30	40	50	60		353.15	0 18	0.11	0.09	0.07	0.06	0.05	1
273.15	0.82	0.67	0.58	0.51	0.47	0.44		363.15	018	0.13	0.10	0.08	0.07	0.06	
283.15	0.98	0.78	0.66	0.57	0.51	0.47		373.15	018	0.14	0.11	0.09	0.08	0.07	
293.15	1.19	0.91	0.76	0.65	0.57	0.51									
303.15	1.46	1.05	0.86	0.73	0.63	0.56									
313.15	1.93	1.21	0.97	0.82	0.70	0.62			\vee						
323.15	2.68	1.39	1.09	0.91	0.78	0.68									
333.15	2.93	1.58	1.22	1.01	0.86	0.75	Condi	tions whe	re C	$U_2 +$	etha	nol	is b	etter	solven
343.15	3.04	1.78	1.34	1.11	0.94	0.82									
353.15	3.09	1.98	1.47	1.21	1.03	0.89									
363.15	3.12	2.16	1.60	1.30	1.11	0.96									
373.15	3.14	2.31	1.72	1.40	1.19	1.03									

Solubility of β -carotene in both pure and ethanolmodified CO₂ (2.4 %)

J. Supercrit. Fluids., 21, 195–203 (2001).

Solubility of β -carotene in pure CO₂

J. Supercrit. Fluids., 21, 195–203 (2001).

COMPLUTENSE MADRID RESULTS & DISCUSSION

Experimental results on the extraction of β -carotene from Synechococcus sp. in CO₂ and mixture with ethanol

Pure CO₂

CO2 + Ethanol (95:05 v/v)

Extraction yields of β -carotene.

Supercritical extraction from solids is controlled by internal mass transfer and so enhanced by temperature

- The Hansen theory can be used to compare the performance of co-solvents in the solubility of natural compounds in a specific interval of operating conditions
 - Caution should be taken with solvents with a ring structure
- ✓ The effect of pressure is well predicted due to the direct relation between pressure and density
- ✓ A contribution of the impact of temperature on solute vapour pressure should be added to the model, e.g. a term with the Antoine equation?
- ✓ The mass transfer kinetics should be taken into account when using the theory to predict the supercritical extraction of bioactive compounds from solids

Thank you for your attention

ditirado@ucm.es lcalvo@ucm.es*

UNIVERSIDAD COMPLUTENSE MADRID

HSP50

The 50th Anniversary HSP Conference 5-7 April 2017, York, UK

Application of the Hansen solubility theory for the selection of co-solvents for supercritical carbon dioxide extraction

Diego F. Tirado, Mª José Tenorio, Albertina Cabañas and Lourdes Calvo*

School of Chemistry Universidad Complutense de Madrid Av. Complutense s/n, 28040 Madrid, Spain